Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Korean Journal of Veterinary Research ; : e21-2023.
Article in Korean | WPRIM | ID: wpr-1002475

ABSTRACT

The increasing prevalence of toxic substance-exposure in pets in South Korea endangers the health and safety of numerous companion animals, and has become a cause for concern. Notably, the annual incidence of forensic analysis in pets has increased by more than 150% in South Korea, mainly in populous regions such as Seoul, Incheon, and Gyeonggi. In response to this growing issue, veterinary forensic examinations were conducted on 549 dogs and cats from 2019 to 2022. This study revealed the presence of various toxic substances, including pesticides, insecticides, and drugs such as analgesics, anesthetics, antidepressants, and muscle relaxants, in pets. Among the 38 different toxins identified in pets, coumatetralyl, methomyl, terbufos, and buprofezin were the most frequently detected. In this study, toxic substances for pets were identified based on the “toxic agent list for humans,” developed by the National Forensic Services, because no list of toxic agents for animals currently exists and data regarding potentially toxic substances for dogs and cats is limited. This is one of the limitations of this study, and necessitates the establishment of a toxic agent list for animals. Continued monitoring and research is also recommended to reveal the incidence, causes, and solutions of toxicity in animals.

2.
Journal of Veterinary Science ; : e37-2020.
Article | WPRIM | ID: wpr-833695

ABSTRACT

Poultry red mites (PRMs), Dermanyssus gallinae, are one of the most harmful ectoparasites of laying hens. Because of their public health impact, safe, effective methods to eradicate PRMs are greatly needed. Carbon dioxide (CO2 ) was shown to eradicate phytophagous mites;however, there is no evidence that PRMs can be eradicated by CO2. Thus, the efficacy of CO2, applied by direct-spraying and dry ice-generated exposure, for eradicating PRMs was investigated. Both treatments eradicated > 85% of PRMs within 24 h and 100% of PRMs by 120 h of post-treatment. Therefore, these novel approaches may be useful for eradicating PRMs in clinical settings.

3.
Journal of Veterinary Science ; : e15-2019.
Article in English | WPRIM | ID: wpr-758893

ABSTRACT

It is crucial to optimize the dose of fluoroquinolones to avoid antibiotic resistance and to attain clinical success. We undertook this study to optimize the dose of enrofloxacin against Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) in chicken by assessing its pharmacokinetic/pharmacodynamic (PK/PD) indices. The antibacterial activities of enrofloxacin against S. Enteritidis were evaluated. After administering 10 mg/kg body weight (b.w.) of enrofloxacin to broiler chickens of both sexes by intravenous (IV) and peroral (PO) routes, blood samples were drawn at different intervals and enrofloxacin concentrations in plasma were determined. PK/PD indices were calculated by integrating the PK and PD data. The elimination half-lives (T(1/2)), time required to reach peak concentration (T(max)), peak concentration (C(max)), and area under curve (AUC) after administering enrofloxacin by PO and IV routes were 25.84 ± 1.40 h, 0.65 ± 0.12 h, 3.82 ± 0.59 µg/mL, and 20.84 ± 5.0 µg·h/mL, and 12.84 ± 1.4 h, 0.22 ± 0.1 h, 6.74 ± 0.03 µg/mL, and 21.13 ± 0.9 µg.h/mL, respectively. The bioavailability of enrofloxacin was 98.6% ± 8.9% after PO administration. The MICs of enrofloxacin were 0.0625–1 µg/mL against S. Enteritidis strains, and the MIC₅₀ was 0.50 µg/mL. The C(max)/MIC₅₀ were 7.64 ± 0.2 and 13.48 ± 0.7 and the 24 h AUC/MIC₅₀ were 41.68 ± 0.1 and 42.26 ± 0.3 after administering the drug through PO and IV routes, respectively. The data in this study indicate that the application of 50 mg/kg b.w. of enrofloxacin to chicken through PO and IV routes with a dosing interval of 24 h can effectively cure S. Enteritidis infection, indicating the need for a 5-fold increase in the recommended dosage of enrofloxacin in chicken.


Subject(s)
Area Under Curve , Biological Availability , Body Weight , Chickens , Drug Resistance, Microbial , Fluoroquinolones , Pharmacokinetics , Plasma , Salmonella enterica , Salmonella enteritidis , Salmonella , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL